
[Jain, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [435]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

An Approach to Analysis the Reusability of the Object Oriented Software
Ashi Jain*, Anushree Asodiya, Deepak Agrawal

Computer Science & Engg, AITR Indore, India

Abstract
Reusability Metric is use to provide direction to increase productivity and maintainability of the developing

application. One must search for good tested software component and reusable. Some of the developed software can

be useful for the other developer also. In this manner, it is proving that code specifics to application requirements

can be also reused in develop projects related with same requirements. The idea of this research work is to suggest a

approach for reusable component. A process that takes source code as a input that will helped to take the

approximately judgement which reusable artefacts, particular software should be reused or not.

Keywords: software reuse, reusability, metrics, CK metrics, cyclomatic complexity

Introduction
In today’s era, everyone is interested to increase the

productivity, and reducing the cost of products that

we are developing, and provide better quality in the

software. There are various types of quality attributes

available from which one can be identify the software

quality. Reusability is approach that not only

increases the productivity but decreases the

maintainability of the software, which is to reusable

the existing component. Because, time and effort

already spended for the developing product. The

earlier software modules were already well tested and

designed. We should reuse earlier software.

Skill may help us not only to learn how to build

reusable components but also to identify reusable

components among the wealth of existing programs.

Existing programs contain the knowledge and

experience gained from working in the particular

application domain and meeting the organization’s

software needs. If we could extract this information

efficiently, we could gain a valuable resource upon

which to build future applications. Reusability save

the lot of time for developing the software and also

reduced the cost of the software development. It is

also increases the software performance. Objective of

the any system organization is to provide the good

quality product and reduced the cost for the same.

Reusability
Reusability measurement is allowing for identify

the reusable modules from being program and way to

build. Some Department and Organization, along the

increasing level of software reuse, development cost

taken to develop the software and save the cost and

time. Department of U.S. saved 300 million $ by

increasing the 1% reusability software. Being

software programs contain the knowledge’s and

experiences of the developers who are good in

particular application domain area. So we take out

information from being program which comfort to

require of the software system then it is beneficial for

the organization.

There are many examples where reusability helps

a. In Missile Systems Division (MSD) using the

computer software reuse concept it increased

the 50% productivity.

b. American Navy utilizes the reusable modules

which reduce 26 % of labour required to

develop and maintain the Restructured Naval

Tactical Data Systems (RNTDS).

c. Magnavox saw when we are using the reusable

modules to develop the Force Fusion System

Prototype (FFSP); it reduces the 20% of the

development time of estimated time for

developing the new system.

We determined from requirement stage to last

stage of the software development .In Software

development life cycle Reuse concept is not

determined to only coding stage. These are several

phases where software development is reused:

a. Code

b. Requirement

c. Architecture/design documentation

d. Test plans

e. Specifications

f. Design

g. Manuals

h. Templates

http://www.ijesrt.com/

[Jain, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [436]

i. Design decisions.

Previous work
Michael a cusumano suggested that reusability also

needs to be seen as a administrative and

organizational problem. In this paper, the discussion

was especially on techniques and tools used for the

development of quality software’s. Which in the mid-

1980s was regularly delivering software systems with

nearly 50% reused code. Finally, the paper concluded

that Reusability, and the promising reuses

approaches, actually fell across a range.

Young Lee suggested a proposed quality model for

object oriented software called as Reconfigurable

Automated Metrics for Object (RAMOOS). The

quality model points the maintainability and

reusability aspects of software which can be

successfully predicted from the source code. The

modal works during the time period of software

development.

James M.biemen suggested that derivation for the

measurement of software reuse and introduces some

definition, attributes and abstractions. In this paper

the focus is upon the importance of the standpoint of

the observer when analyzing, measuring and profiling

reuse using measurement theory. The author has

given measurement theory for measuring the concept

of reusability. He also compares the measurement

theory with the traditional object oriented approach.

Dandashi F. Suggested that how productivity and

maintainability play an important role in software

quality assurance. the author tried to develop some

sample application using some technology and try to

find a way that help to enhance the productivity of

the software.

Selby providing the approach which supporting the

modification of reused code Selby classifying the

module into a particular category based on the

percentage of reused Code is modified in make new

module. These categories are:

a. Complete new module.

b. Reused Module with grater then equal to 25

percentage changes.

c. Reused Module with less than equal to 25

percentage change.

d. Module that are reused without change.

All these measurement are based on only one

Attributes program size or program length. Selby add

one another attributes modification. Reuse Measure

Derivation As indicated in the title, this paper gave a

description of how to derive measures of software

reuse in object oriented systems. The method used to

derive measures of software reuse, is derived from

measurement theory and was described as.

a. Define considerable and identify and

nonrational, realized attributes of software

reusability, we must qualitatively understand

what we want to evaluate.

b. Determine precisely the attributes to be

measured and the documents. The measurement

must be able to specify and indications of the

measurement and the aim with higher precision.

c. Development of formal methods with higher

level of abstractions which describe the

attributes. Formal designs for definition to

produce quantitative evaluate to study these

abstractions without any ambiguity in them.

d. Devising the relationship of the model with the

attributes with this quantitative measurement.

These relationships must be in consistency with

the specification of attributes and quantitative

values.

Assessing Module Reusability:

In these paper Propose the Conceptual model for

estimating the reuse of the module. Reusability

determines the reusability of the module as product

of its applicability and functionality. In this paper

define model of Reuse as function of Applicability

and Functionality.

Functionality:

Functionality of the module is determined as number

of situation in which this module is Use, based on the

specification. Important Problems will get a high

functionality, while a module that covers a few

specific, rare problems will get a low functionality.

Applicability:

Applicability measuring the number of situations in

which a module can be reused. When the module can

only be applied in 50%of the situations where its

specified features are needed, then its applicability is

50%. The applicability of a module is 100% when

any situation that calls for features provided by the

module, the module can actually be used. There are

many reasons why a module's applicability might be

less than 100%, including:

a. Technical limitations, such as programming

languages and platforms.

b. Incompatibilities by details of the interface.

c. Incompatibilities by external dependencies.

d. Architectural mismatches.

Definition of reuses types
Bieman et al’s [6] determined the various types of

reuse and defined the three types of reuse in the

three perspectives. These are explained as follows:
a. Public Reuse:

http://www.ijesrt.com/

[Jain, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [437]

Fenton define the public reuses as “the proportion of

a product which was constructed externally “.

 Public reuse = length (E) / length (p);

 E is the code developed externally.

 P is the new system including E.

b. Private Reuse:
Fenton defines private reuse (or possibly more

appropriately internal reuse) as the “degree to which

modules between products are reused within the same

product”.

Fenton uses the call graph which represents the flow

connection of the module .In these graphs node

represents the module and they are connected through

edges. If one node calls another node then edge

displays the connection between them. Fenton

provides the formula for calculating the private reuse

in call graph as follows

 R (G) = e – n + 1;

e is total no of edges in graph. And n is the number of

the nodes in graph.

c. Leveraged Reuse:

In Leveraged reuse means modifications of reuse

is allowed.

d. Direct Reuse:

Direct reuse is reuse without using the

intermediate entity. One module directly calls another

module.

e. Verbatim Reuse:

In Verbatim reuse means modifications of reuse is

not allowed.

f. Indirect Reuse:

Indirect reuse is reuse through an intermediate

entity. When first module calls second module and

second module calls the third module then first

module indirectly calls the third module.

Three Perspectives for Reuse:

Bieman provided the three perspective view for

identifying the reuse views. These are described as

follows:

a. Server Perspective: perspective of the library

component known as a server perspective. Server

reuse of the any class will characterize how one

class is using the other class.

b. Client Perspective: Client perspective means how

one particular entity is using the other entity i.e.

how the new system using the existing system.

c. System Perspective: it is the combination of the

both server perspective and client Perspective.

Properties of software which affect

reusability
There are some software attributes which affect the

reuse. The relationship between these attribute and

the reusability are explained as follows:

a. Complexity: when the complexity of the class is

high or for developing the class developer uses

a complicated structure then that type of class is

difficult to reuse and difficult to understand.

b. Complexity of interface: Complicated interface

make reuse difficult.

c. Class size: when the size of the class is large

then it is difficult to understand and difficult to

reuse.

d. Dependencies: Dependency of the single

module to various modules may also make reuse

more difficult.

Reusability is depending about the, adaptability,

portability, maintainability reliability and

understandability. We are dealing with the java

program that way portability is not issue for us.

Complexity is of two types’ structure complexity and

inheritance complexity. And we are treating with

static code therefore we are not considering the

reliability an affect which is the reusability, since

reliability is measure in terms of the average time and

error which is measured, on the execution of the

program. Understandability is depending on the

structure complexity, documentation level of the

programs and size.

Figure 1 Factor in which Reusability Depends

A. Understand ability:

Understandability is the level in which the meaning

of the software system or module should be

authorizing to the developer or user.

Understandability depend along the following

element, these are Documentation level, size and

complexity. When module are well documented then

understandability of the module is high i.e. module

having more comment line so new developer

understand module code easily, since what cause

http://www.ijesrt.com/

[Jain, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [438]

function do describe in the starting of the purpose.

Understandability is also depending along the size of

the module. When the size of the module is high,

then it is difficult to understand. If the Complexity of

the module is high then module is difficult to

understand. We tell module is more complex when

module holds more composite data structure in his

program and more decision statement Complexity is

two types beginning is structure complexity it was

easily measure along WMC metrics and second is

inheritance complexity; this complexity is

measurement by using the DIT and NOC metrics.

When the program is using the concept of

inheritance, then these metrics are used for measuring

the inheritance complexity.

Fig 2 Factor and Metrics in which

Understandability depends

a. Lines of Code (LOC): This metrics applied for

measuring the size of the program by

considering the no of lines in program. Lines of

Code (LOC) counts all lines like as source line

and the number of statements, the number of

comment lines and the number of blank lines.

b. Comment Percentage (CP): CP is computed by

number of comment line separated along Line

of Code. High evaluate of the CP increases the

maintainability and understandability.

 CP = Comment Line / LOC;

c. Weighted Method per Class (WMC): This

metrics is applied towards calculating the

structure complexity of the programs. Method

complexity is measured by using Cyclomatic

Complexity and WMC is sum of complexity of

the all methods which is applied in class.

Suppose class is getting the methods (m1, m2,

and m3…mn) and complexity of the methods

are (c1, c2, and c3…cn) then

 WMC = c1+c2+c3+…. +cn;

Cyclomatic Complexity causes foundation of the

graph theory and is computed in one of the 3

directions. Number of regions in flow graph.

Cyclomatic Complexity determined in flow graph as

follow

 C (G) = E – N +2;

Where N is the no of the nodes in graph and E is the

no of the edge in the graph.

Cyclomatic Complexity defined in flow graph as

follow

 C (G) = P+1;

Where ‘P’ is number of predicate nodes in the graph.

Statement where we are taking some decision are

called predicate node.

d. Depth of Inheritance Tree (DIT): This metric

is applied for measuring the inheritance

complexity for the programs, when programmer

usages the inheritance in his program then this

Metric can be utilized.DIT is the Maximum

depth from the root node of tree to special node.

Here class is represented as a node. Deeper node

in the tree accepts more no of the methods

because they inherit and the more classes in the

tree and it make the class more complex.

e. Number of Children (NOC): NOC is applied

when there are many numbers of the Sub-

Classes of the Particular class in hierarchy of

the class exist. When children of a class are

more then it requires more testing because super

class may be misused.

f. Public Interface Size: Public interface size is

determined when a number of the public method

deliver in the class. Which describe how much

other class is using that class’ method?

B. Maintainability :

The degree to which the system or module of the

software can be modified easily in order to fix bugs,

adding quality attributes or for adjustment of the

operating environment change, increase efficiency of

the system. Maintainability depends on the following

factor, modularity these are size, complexity. We say

module is more complex if module comprises more

decision statement and more complex data structure

in his program. When the Complexity of the module

is high then module is difficult to maintain.

Modularity is measure by using the coupling metrics

and cohesion metrics and Maintainability heavily

depends on the modularity. Modularity is idea for

managing the complexity of complex system by

dividing it into various small modules and this

module is communicates by using interface. We

handle the complexity by using the concept of the

modularity. By using the concept of modularity we

find clear and simple system. When the

module is high cohesive then it is easy to maintain. If

module having the more no of the local method then

it difficult to maintain. And if size of the module is

high then it difficult to maintain if the coupling of

http://www.ijesrt.com/

[Jain, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [439]

any module with other module is low then this

module is easily modified and easy to maintain.

Maintainability is also depending on the cohesiveness

of the module. If we write code for any module and

interested in measuring the quality of module then

the best criteria for measuring the quality of the code

is measure based on quality factor maintainability.

Maintainable code is more flexible, code is not

maintainable because module performing several

functionality and invoking other module. Any

module is more maintainable if we add easily new

functionality and exchange existing functionality of

the module. Metrics victimized for calculating

maintainability of the program, Shown in the Figure

3.

Figure 3 Factor and Metrics in which

Maintainability depends

C. Adaptability:

Adaptability determines as how easily software

satisfies requirement or and user requires of the new

environments from being system and system

constraints. Now suddenly business environment or

business require is changed, thus handling this

situation adaptability is one of the important

component or weapon. Business market situation is

change frequently so our software system should be

adaptable to satisfy this requirement. It doesn’t intend

whatever software. We build up from oop is always

adaptable. In object oriented concept applying the

ability to build adaptable software. When the

coupling of module is low and cohesion is high that

signifies module is easily adjust in new environment

from old environment. For make adaptable module

we concentration on cohesion and coupling of the

module. Metrics used for calculating adaptability of

the program, Shown in the Figure 4.

Figure. 4 Factor and Metrics on which Adaptability

depends

a. Coupling: Coupling is also called dependency.

Coupling is the level to in which one module is

depend on the other module signifies. It is using

the functionality of the other module. Coupling

is one important component which helps you to

determine the quality of the design or software.

Design of the designer or good programmer is

to archive low coupling.

b. Cohesion: Cohesive signifies that a certain class

performs a set of closely related to actions. A

lack of cohesion means that a class is

performing and various unrelated tasks.

Principle of object oriented say increase reduces

the coupling between modules and cohesion of

the module. It is beside beneficial for

architecture point of view. Cohesiveness means

each functions in the class perform one affair.

When this happened in the class then new

designer can well understood what class

performs.

Approach for identification of reusable

module
a. Extract the source code: In this phase we

analyzed the source code and extract useful

information and store it in memory, which is

necessary for calculating the all metrics,

these metrics are necessary for evaluate

factor on which reusability depend.

b. Calculating the Metrics: In this phase we

calculate, all metrics which describes in

above section, for implementing these

metrics, we used information gathering from

extract phase. And result of the all metrics is

store in memory. All metrics are concern

with object oriented system.

c. Display: In this phase we calculate the

reusability of the source code. We give the

some weighted to each metrics and finally

we determine the reusability of the sources

code. And display source code is reusable or

not.

Figure 5 Steps follow for identified reusable module

http://www.ijesrt.com/

[Jain, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [440]

Conclusion
The purpose of this paper is to finding the approach

and way to calculate reusability of object oriented

programs. Reusability is one of the quality attribute

and it is of prime importance in object oriented

software development as reusability leads to

increase in developer productivity, reduce

development cost as well as reduce time to market.

The work presented in this paper can be effectively

used to calculate the reusability of any object

oriented software module.

References
[1] Software Reuse Plans BringPaybacks,”

Computeworld, Vol. 27, KO. 49, pp.73-76.

Anthes, Gary I I.,

[2] J.W. Bailey and V.R. Basili. “A s meta-model

for oftware development resource

expenditures”. Proc. Fifth Int. Conf. Software

Engineering.Pages107-116. 1981

[3] Norman Fenton. “Software Metrics A

Rigorous Approach” .Chapman & Hall,

London, 1991

[4] Software Reusability Vol II Applications and

Experiences, Addison Wesley, 1989.

[5] James M. Bieman “Deriving Measures of

Software Reuse in Object Oriented Systems”

Springer-Verlag 1992 pp 79-82.

[6] Chris Luer, “Assessing Module Reusability”,

First International Workshop on Assessment

of Contemporary Modularization techniques

(ACoM'07).

[7] Dandashi F., “A Method for Assessing the

Reusability of Object-oriented Code Using a

Validated Set of Automated Measurements”,

ACM 2002 pp 997-1003.

[8] Young Lee and Kai H. Chang, “Reusability

and Maintainability Metrics for object

oriented software”, ACM 2002 pp 88 – 94.

[9] Jeffrey S. Poulin “Measuring Software

Reusability”, IEEE 1994 pp 126- 138.

[10] B. W. Boehm. “Software Engineering

Economics” .Prenntice Hall, Englewood Cliffs,

NJ, 1981.

[11] Shyam R. Chidamber, Chris F. Kemerer, “A

metrics suit for object oriented design”,1993

[12] S.D. Conte, H.E. Dunsmore, and V.Y. Shen,

“Software Engineering Metrics and Models”.

Benjamin"Cummings, Menlo Park, California

1986.

[13] M. Burgin. H. K. Lee. N. Debnath, “Software

Technological Roles, Usability, and

Reusability, Dept. of Math”. California Univ.,

Los Angeles, 2004.

Richard W. Selby. “Quantitative studies of software

reuse”. In Ted J. Biggersta and Alan J. Perlis, editors.

http://www.ijesrt.com/

